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Abstract: Random Neural Networks (RNNs) are a class of Neural Networks (NNs)
that can also be seen as a specific type of queuing network. They have been
successfully used in several domains during the last 25 years, as queuing networks to
analyze the performance of resource sharing in many engineering areas, as learning
tools and in combinatorial optimization, where they are seen as neural systems,
and also as models of neurological aspects of living beings. In this article we
focus on their learning capabilities, and more specifically, we present a practical
guide for using the RNN to solve supervised learning problems. We give a general
description of these models using almost indistinctly the terminology of Queuing
Theory and the neural one. We present the standard learning procedures used by
RNNs, adapted from similar well-established improvements in the standard NN
field. We describe in particular a set of learning algorithms covering techniques
based on the use of first order and, then, of second order derivatives. We also
discuss some issues related to these objects and present new perspectives about
their use in supervised learning problems. The tutorial describes their most relevant
applications, and also provides a large bibliography.
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1. Introduction

Supervised Learning is an area of the Machine Learning field that refers to a set
of problems wherein the information is presented according to an outcome mea-
surement associated with a set of input features. The information is presented as
a dataset of labeled samples. The aim is “to learn” the relationship between input
and output features. This learning process is done based on a set of examples in
order to generate a learning model with the power of “generalising”, this is to make
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“good” predictions for new unseen inputs. The research on Neural Networks (NNs)
is considered to have started with the work of Warren McCulloch and Walter Pitts
in 1943 [84], and it has produced a rich literature with a strong concentration of
papers in the 80s and 90s. In the 80s Rumelhart et al. explored the relationship be-
tween Parallel Distributed Processing (PDP) systems and various aspects of human
cognition. The authors defined a general framework of a PDP system reactivating
the research on connectionist models [98]. The most popular PDP systems are
NNs. In the last decades several books and journals have been dedicated to the
research on NNs. The interest in the NN area arises from both its theoretic aspects
and its computational power for solving real problems. NNs have been successfully
applied in many different fields such as engineering, biology, pattern recognition,
theoretical physics, applied mathematics, statistics, etc.

There are many types of NNs, and the related literature is huge. This ar-
ticle focuses on a particular class of NNs called Random Neural Networks. The
RNN model was introduced by E. Gelenbe in 1989 [37,38]. RNNs are mathe-
matical objects that combine features of both NNs and queueing models. They
been successfully employed in many types of applications: in learning problems,
in optimization, in image processing, in associative memories, etc. Here, we are
specifically interested in the situations where the model is applied for solving su-
pervised learning tasks. A RNN is a PDP composed of a pool of interconnected
nodes, which process and transmit information (signals) between them. Each node
is a simple processor and it is characterized by its state, a whole number. The
nodes receives two kinds of signals (negative and positive) from their neighbors or
from outside. When a negative signal arrives to a node, it produces an effect that
can be related to neural inhibition, its state its decreased by one. The arrivals
of positive signals provoke the opposite effect, the state is increased by one. The
fire of signals by the nodes is modeled by Poisson processes, and the pattern of
connectivity among the neurons follows stochastic rules.

The design of the model was inspired from the biological behavior of neuron
circuits in the neo-cortex. The model considers the following biological aspects: the
action potentials in the form of spikes, the exchange of excitatory and inhibitory
signals among the neurons, the synapses (weighted connections between two neu-
rons), random delays between spikes, reduction of neuronal potential after firing,
arbitrarily topology [37]. The model has been also proven very powerful, from
the computational viewpoint. In [58] the authors shown that under certain alge-
braic hypothesis the RNN is an universal approximator. Besides, it can be easily
implemented in both software and hardware. In order to apply the model for solv-
ing learning tasks, several learning algorithms have been adapted from the classic
NN to RNNs, such as the Gradient Descent [35] and Quasi-Newton methods [16,
74]. The number of applications of the model in the learning area is very large,
but the model has been also applied to solve combinatorial optimization prob-
lems, such that the Traveling Salesman Problem or the Minimum Vertex Covering
Problem [42,47].
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Main contributions

The first overview about RNN was presented in 2000 [9]. A survey about RNN
focused on networking application and self-aware networks was introduced in [99].
Another general and helpful survey about RNN was presented in [104], where the
authors describe the main applications of RNNs, covering several topics including
biology, reinforcement learning, and optimization problems. In [60] the authors
focused on RNN for solving learning problems, they identified some drawbacks of
the RNN learning applications. In addition, an extensive literature about RNN
was presented in [29]. In the 25th anniversary of the RNN model, we present
this tutorial that contains the following contributions with respect to the previous
published material.

e We introduce the model as a simple computational processor in a PDP frame-
work, instead of using concepts coming from queueing systems. Besides, we
present a parallelism between this particular PDP and the model as belonging
to the queueing area.

e We provide a structured overview about the numerical optimization algo-
rithms used for training RNNs. We introduce algorithms that use the first
derivative information of a quadratic cost function, such that the gradient
descent type algorithms. We then present Quasi-Newton methods that use
the information of the second derivative of the cost function. In this practi-
cal guide, all the algorithms used for training are shown in detail following a
homogeneous format.

e We present a critical review and new perspectives on RNN in supervised
learning. We discuss technical issues concerning stability problems in the
model itself, as well as problems related to the parameters’ optimization in
the learning process. We discuss some points related to the computational
advantages of the model, as well as about its weaknesses and limitations.
The overview concludes with remarks concerning some new trends and future
research lines.

In addition, this article presents an overview of some selected applications of the
RNN in the supervised learning area. In particular, we comment on two applica-
tions where the experimental results show a better performance of the model with
respect to other techniques of the literature.

Organization of the article

This article is structured as follows. Section 2 formally describes the RNN model
as a learning tool and in the framework of queueing theory. Section 3 presents algo-
rithms for training the RNN model. It starts with a formal specification of the com-
putational problems in supervised learning. In Section 3.2 we give a general descrip-
tion of RNN in the learning context. We present the Gradient Descent algorithm
in Section 3.3, and we introduce second order optimization methods in 3.4. We
describe the following algorithms: the Broyden-Fletcher-Goldfarb-Shanno in Sec-
tion 3.4.1, the Davidon-Fletcher-Powell in Section 3.4.2, the Levenberg-Marquardt
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in Section 3.4.3 and one variation of it in Section 3.4.4. We present a critical re-
view about the RNN model for solving learning problems in Section 4. Section 5
presents an overview of applications. We conclude and present new research trends
in Sections 6.

2. The Random Neural Network model

This Section formally introduces the RNN model. It has four parts. First, we
describe a single neuron (Random Neuron) as an elementary processor. Second,
we present the RNN as a system composed by interconnected neurons. Third,
we review the model in the framework of queuing networks. The section ends
introducing the different topologies and structural concepts of the RNN.

2.1 Random Neuron (RN)

A Random Neuron (RN) is a real parametric function of two real variables, with
a real parameter called the neuron’s rate. The input variables are assumed to be
non-negative. The rate is positive. If x > 0 is the first input variable, y > 0 is the
second one, and if » > 0 is the rate of the neuron, then the output is the real z

given by the expression
x

-y yr. (1)
See that a RN is characterized by its rate r. We can see the neuron as an input-
output system with two “input ports”, one for z and the other one for y, and one
output port for z. The ports associated with the output and with the first input
value are called positive; the input port corresponding to the second input variable
y is called negative (the reason for this is explained later), but all the variables
involved are non-negative real numbers. Fig. 1 shows a neuron as an input-output
device. When x > r 4+ y we say that the neuron is saturated.

z =

T
r+y

r

D=

Fig. 1 A zoom on a random neuron (RN) seen as a “black-bozx” system; the inputs
are the reals x,y > 0; the parameter is the rate r > 0, and the output is the real
z; we say that the first input variable x is connected to the positive input port of
the RN (depicted 4+’) and the second input variable y to the negative input port
(depicted ‘—’); the output port is also said to be positive (and it is depicted “+’ in
the figure)

The output value z is seen as a measure of the activity of the neuron (as in most
input-output systems). As such, see that z is increasing in = and decreasing in y.
In real neurons, which also are input-output systems, the input signals belong to

460



Basterrech S., Rubino G.: RNN model for supervised learning problems

two types, excitatory signals, which are those contributing to the neuron’s activity
measured by its output (the higher the excitatory signal, the higher the neuron’s
activity) and inhibiting inputs playing the opposite role. This is why we call positive

3 )

the signals arriving at the ‘+’ input port, and negative those arriving at the ‘—
one.

We will say that a RN is controlled if its output z is modified according to the

rule
z:rnin{aj ,1}7". (2)
T4y

So, in this case the RN’s output is always less than or equal to its rate, and it is equal
to its rate when the neuron is saturated. In the case of the initial definition (1),
the neuron is said to be uncontrolled.

2.2 Random Neural Network (RNN)

A Random Neural Network (RNN) is a network composed of N interconnected
RNs, that implements a function from R?Y into R?, for some 1 < O < N, in the
following way. We are given N RNs denoted 1,2,..., N (that is, we are given N
strictly positive reals 71,72, ...,7y), and two N x N matrices denoted by P+ = (pjj)
and P~ = (p;j)7 whose components are probabilities. Both matrices and their sum
are substochastic, that is, for any of their rows, say the ith one, we have

N
> (whw) <t

Jj=1

Also, for at least one of the neurons, we have Zjvzl(p;; + p;]) < 1. The neurons

for which Zjvzl(pjj + p;) < 1 are called output neurons. We denote by O their
number (so, 1 < O < N). The network outside is often referred to as the neuron’s
environment with which the system operates [98].

Let us denote the 2N input variables of the network as x1,...,ZN,Y1,--.,YN-
Then, the output of the network is the set of outputs of each of its output neurons.
We need only to specify how are determined the inputs to the N RNs (the outputs
are given by the previously described rules, in the uncontrolled or controlled cases).
Let us call u; (respectively v;) the positive (respectively negative) input to neuron .
Then, the following equations must be satisfied:

N N
— + _ —
U; = Tj + E ZiPji» v =Y + E ZjPji-
Jj=1 j=1

In words, the fraction p;- of the output z; of neuron j adds to the positive input u;

to neuron i, and the fraction P of the output z; of neuron j adds to the negative
input v; to i. Of course, this means that the reals z1,...,zy must satisfy the
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non-linear system of equations

N
+
T; + E ZiDji
Jj=1
N

rit ity by
j=1

Z; = T, 22172,7N

This needs some technical discussions about the existence and unicity of solutions
to this system, as we will see below.
Observe that if we define

dizl—ZN:(p?;-erij), (3)

j=1

we have 0 < d; < 1, and that neuron i is an output neuron when d; > 0. We can
also say that the network of neurons sends the part d;z; of z; through the output
port of 1.

Observation: in general in the learning applications, we use a RNN with N
neurons as a function from R! to RY where I < 2N or even I < N, by setting
2N — I of the standard 2N input variables to a fixed value (typically to 0). We
will see soon this frequent situation. An important particular case covering all
the applications done so far for these objects as learning tools is as follows. The
network with N neurons implements a function with I < N input variables and
O < N output variables. The input variables are denoted by z1,...,z;, which
are all connected to the positive port of I neurons called input neurons. In other
words, no input variable is connected to a negative port. The function output is
the set of outputs generated by the O output neurons. A group of neurons can
have no interactions with the environment (when I + O < N). We call those units
hidden neurons. Note that a neuron can be both an input and an output one.

2.3 A queueing view of the Random Neural Networks

The RNN method has been used with two different interpretations both referring
to exactly the same mathematical model. One is the already described type of
interconnected RNs. Another one is a type of queueing systems called G-queues
and G-networks. The first interpretation is often employed in the Machine Learning
contexts and the second one is applied in Performance Evaluation, for example.
We begin by describing a single queue where customers arrive according to a
Poisson process, say with rate A > 0, and service times are exponentially dis-
tributed with parameter » > 0. It is assumed that service times are mutually
independent and that they are also independent of the inter-arrival times. This
server queue is named M/M/1 queueing model [72]. At any time ¢ the state of the
system S(t) is the number of customers present in the queue. The queue storage
capacity is infinite. The stochastic process {S(t), ¢ > 0} is a continuous time ho-
mogeneous Markov process on the non-negative integers. We define the utilization
factor of the queue as the ratio p = A/r. When the process is ergodic (¢ < 1), the
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steady-state is given by
p(k) = lim P(S(t) = k) = o"(1 - o). (4)

t—o00

A Jackson queueing network consists of N interconnected queues with the fol-
lowing characteristics. For each queue i the service time is exponentially distributed
with rate r;. When a customer completes the service at queue 4, it will either move
to queue j with routing probability p;; or leave the network with probability d;
(d;i=1- Zjvzl pij). Customers arrive from the environment to queue i according

to a Poisson process with rate )\;'. At any time ¢, the system state is the vector
S(t) = (S1(t),...,Sn(t)), where S;(t) denotes the number of customers in queue i
at time ¢t. The assumptions about the independence among the processes can be
summarized as follows:

e arrival processes, service processes and switching (routing) processes are in-
dependent of each other;

e at each server, the service times are independent of each other;

e at each switching point, the successive switching results are independent of
each other.

We define T; as the mean throughput at queue 7. In order to avoid a trivial
case, we assume that at least one of the A\ ’s is non-zero (strictly positive). In
addition, assuming that the system is irreducible (for any two nodes ¢ and j in the
Markovian graph there exists a path from ¢ to j), and in equilibrium, T; for all 4
can be determined by solving the flow balance equations:

N

T; = >‘z+ + Z ijji~ (5)
j=1

The strongly connected property of the Markovian graph implies that exists an
unique (and strictly positive) solution. The utilization factor of queue i is given by
0i = Ty/r;.

A G-network (or equivalently, an RNN) is an extension of a Jackson’s network
where there is a new entity in the system: negative customers. As in the previous
network, in a G-network there are Poisson arrivals, probabilistic routing among the
queues, exponential service rates and usual independence among the corresponding
stochastic processes. There are two types of customers in the system, positive ones
that operate as we defined for the Jackson network, and the negative ones that
operate as follows. When a negative customer arrives at a non-empty queue, it
destroys a positive customer in this queue, if any, and disappears. If there are no
customers in the queue, a negative customer does not operate, it just disappears
from the system. In several works negative customers are referenced as signals,
thus there are two entities, customers (positive customers) and signals (negative
customers).

In [37,36] Gelenbe shows that, in an equilibrium situation, the ;s satisfy the
following flow balance equations:

T+

for each node 1, g = ——, 6
¢ r; + T; ( )
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N
for each node 1, TZ-+ = /\j' + Z Qj""jp;;‘, (7)
=1
and
N
for each node 1, T =X+ Z 05T5Ps5 (8)
j=1

with the supplementary condition that, for all neuron i, we have o; < 1. An
important result associated with open Jackson networks and with G-networks is
called the product form theorem. Gelenbe proved that under Markovian assump-
tions G-networks have a product form equilibrium distribution. This means that
the joint equilibrium distribution of the queue states is the product of the marginal
distributions. For more details see [37].

Observation: Let us unify the notation that will be used through this article.
So far we introduced the RNN as a function, next we presented the concept using
a queueing point of view. In the rest of the article, we follow the most often
used notation presented in [37]. Let N be the number of interconnected neurons.
For each neuron ¢ its service rate is denoted by r;, the value at its positive port
is denoted by Tf and to the negative port is T, . The positive input value )\i+
(the Poisson rate of the customers coming from outside), the negative input value
A; (the Poisson rate of the negative customers coming from outside), and the
probability to send information to the environment denoted by d; characterize the
interaction of ¢ with outside. The output of neuron ¢ is its activation rate g;. The

o: activation rate

r: service rate

d: probability to fire outside A

3

At: rate of positive signals from outside

A7 : rate of negative signals from outside
T™: positive signals to the neuron
from its neighbors

T~ : negative signals to the neuron
from inside the network

Fig. 2 A representation of a RN. The figure shows the main parameters involved
in a RN embedded in a network.
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connections between two neurons ¢ and j are given by the probabilities p;’j and
p; ;- Fig. 2 shows the main parameters involved in a RNN. We will introduce in
our notation the concept of weights. For any two neurons 7 and j, they are defined
as: wjj = rip;fj and w; ; = rip; ;. The first one is called positive weight and
the second one is called negative weight. Note that the weights are, by definition,
positive reals. In the context of NNs, the traditional notation used for the weight
connection (direct edge) between the nodes ¢ to j is often denoted as (j,7). In the
RNN context, the reverse order is traditionally used. This originates in the first
paper about supervised learning with RNNs [35].

2.4 The network topology

So far, we defined the RNN as a parallel distributed system composed of simple
processors (RNs). Therefore, the network is a graph where the RNs are their nodes;
the existence of an arc between two nodes is given by certain probability. The two
most common topologies of networks are multi-layer feedforward and recurrent
networks.

2.5 Feedforward topology

We start describing the feedforward case. The identifying property is that there
are no cyclic connections among the neurons, no circuits in the (directed) graph.
The architecture of the graphs consists of multiple layers of neurons in a directed
graph. There are three types of layers popularly known as input, hidden and
output layers. The neurons can have only connections in a forward direction, from
the input neurons to the output neurons, traveling through the hidden ones. Only
neurons belonging to the input and to the output layers can exchange information
with the environment. The activity rate for each output neuron is computed using
a forward propagation procedure. A representation of a feedforward network with
one hidden layer is illustrated in Fig. 3.

Output units
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Fig. 3 A representation of a Feedforward Neural Network. The figure shows a
network with a single hidden layer. The flow of information is from the the input
neurons through the output ones. In this example there are 5 input neurons full
connected to 9 hidden neurons, and the hidden neurons are full connected with 4
output neurons. A network with this topology is used for mapping a relationship
from a 5-dimensional space into a 4-dimensional space.
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The feedforward case has been widely used in supervised learning due to the
fact that training process is much faster than in the recurrent case. Besides, the
feedforward networks are easier to analyze than networks with recurrent topologies.
One advantage is that the non-linear system of equations (6), (7) and (8) can be
formally solved. Then, we can express the activity rate of the output units as
functions of the inputs variables of the system. Let I be the number of input
neurons, H is the number of hidden neurons and let O be the number of output
neurons. We arbitrary index the input neurons from 1 to I, the hidden neurons
from I'4+1 to I+ H and the output neurons from I+H+1to I+ H+0O = N. We can
compute the activity rate of the neurons using a forward procedure as follows. At
the first step, we compute the activity rate of the input neurons, next the activities
of the hidden neurons and finally those of the output neurons. Input neurons are
the only ones that receive signals from the environment; so we set A = \;” = 0 for
all i € [T+ 1, N]. The activity rates are given by the following explicit expressions:

I
+
§ OiW; p,
=1

b
Qi:ﬁ, Vle[l,l], On = T 5 VhE[I+H+1,N],
Z rht Y o,
i=1
and
I+H
> onwi,
i=I+1
Qo = TwH , VYoe[l+H+1,NIJ.
To + Z Qhw};O
i=I+1

More general feedforward networks consist of successive layers where the signals
can circulate only in one direction.

2.6 Recurrent topology

In the case of recurrent networks circuits are allowed. The existence of directed
cycles has an important impact in the model: we can not compute the rate activities
of the output neurons as functions of the network inputs (except, of course, when
N < 4). A RNN with circuits connects to the concept of dynamical systems, rather
than to functions, there is an idea of time implicit in the model. For simplicity we
assume discrete time and we avoid to use temporal notation in @. At each time
instant, the network is characterized by an internal state g formed by the activity
rates @ = (01,...,0n). When an input pattern is presented to the network, the
network updates its internal state. For computing the network state we must solve
the system of equations (6), (7) and (8), where the unknown parameters are g;,
TZ-Jr and 7, for all 7. For solving this system is necessary to perform a fixed point
procedure (a summary about this computation is given in [104]). The output of
the network is given by the state of the output neurons. Unlike the feedforward
case, a recurrent network can use its internal states to process sequences of inputs.
As a consequence, the recurrent case is often used for solving problems where the
dataset presents temporal dependencies.
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3. Random Neural Networks in supervised learning
problems

In this Section we present the algorithms used for learning. The Section starts
with a formal definition of the supervised learning problem. Next, we present the
algorithms of Gradient Descent type for training the RNN. Then, we introduce
the algorithms that use the Hessian or an approximation of the Hessian matrix
for training the RNN. We close the Section with a general discussion that covers
topics such as: limitations of the algorithms in the numerical optimisation, analysis
of the algorithmic time complexity, applications of the RNN concepts in the Reser-
voir Computing area, a discussion about the computational power of the RNN for
approximating any regular function, and an analogy of the model with other NNs.

3.1 Specification of a supervised learning problem

We begin by specifying a supervised learning problem. Given a dataset L =
{(@® b*)) k =1,...,K}, where a*) € A and b*) € B, with A and B some
given finite dimensional spaces (typically, sets of real vectors, or of vectors of ele-
ments in some alphabet, or a mix of both types of objects). The learning procedure
consists in inferring a mapping v(a, £) in order to predict the b values, such that
some distance d(v(a*), £), b)) is minimized for all k& € {1,2,..., K}. We denote
by I the dimension of the input vector a and O the dimension of the output vector
b. For each instance a(*), let us denote p*) the output produced by the network,
that is o*) = v(a®), £). The distance above referred is a function L(-) named loss
function or cost function that measures the deviations of the model predictions gs
and the targets bs. Several types of loss functions have been used, the main ex-
amples are the criteria of Sum-of-Squared Errors (Lrss) and the Kullback-Leibler
distance (Lky,), also called cross-entropy [66,100]. The RSS is defined as

N K
Lrss = Z Z ¢ (bE’“) - ng))27 9)

=1 k=1

where ¢; = 1 when ¢ is an output neuron, otherwise ¢; = 0. There are several slight
modifications of the previous distances, one of those is the Mean Square Error
(MSE) given by:

1
MSE = — Lgss.- 10
LRSS (10)
In supervised learning when the targets are categorical or discrete variables the

problem is called classification problem; when the target is a real vector, the prob-
lem is called regression problem.

3.2 Random Neural Network as a learning tool

A first approach for applying the RNN model in supervised learning tasks was
introduced at the beginning of the 90s by Erol Gelenbe [35]. This procedure is
based on the classical backpropagation algorithm [97]. As in practice, the input
and output variables in learning problems are bounded with known bounds, the
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algorithm described in [35] assumes that a® € [0..1]" and b®) € [0..1)°, for all
sample k. The RNN model as a predictor is a parametric mapping v(a, w*, w=, L),
where the parameters w and w™ are adjusted minimizing the loss function. In [35]
was considered the quadratic error presented in the expression (10). The network
architecture is defined with I input nodes and O output nodes. There are not
additional constraints regarding the network topology, that means the network can
be feedforward with one or several layers, or it can be recurrent network. We set
the port of the input neurons each time that an input pattern a(®) is offered to the
network. The inputs to the positive ports are set with the input pattern: )\j' = agk);
the negative ports of input neurons are conventionally set to zero (A\; = 0). The
output of the model is a vector of the activity rates produced by the output neurons.
The adjustable parameters of the mapping are the weights connections among the
neurons. We follow this Section describing the optimization algorithms that have

been introduced over the last decades.

3.3 The gradient descent optimization algorithm

We can now describe the gradient-based algorithm that was used so far for training
the RNN model [35]. We define two set of neurons J and O that correspond to the set
of input neurons and the output neurons, respectively. The weights are initialized
at some arbitrary values w:[ 1(,0) and wy, 1(,0), for all v and v. At the Tth-iteration, we
select a data pattern (a(k),b(k)), k=1,...,K, where k =7 —1mod K + 1. The
weight correction is computed following the delta learning rule [97], meaning that
the weight correction is proportional to the partial derivative of the loss function

with respect to each weight. From (3), the service rate of neuron i verifies

1 N
= g (v + i) (1)
j=1

for all 4 € JUJ. Also note that r; is a free-parameter when ¢ is an output neuron.

At each step 7, the current weight value descends in the direction of the negative
gradient of L(-); the update rule for positive and negative weights (denoted with
superscript *) of any connection (u,v) is:

i) = w7 + 8, (12)
where
N (k)
do;
5T — _ § : ; (k) _ p(k) i
u,v niZl C (Qz [ ) 81,0:77} .

Il

|

3
VR
Q

E o
NSRS
=
D
—~
S

Z

|
S

(ol k))2
- i)
u,v =1 w=w(T—1)

> L
Yl - 2 (13
i=1 WY | w=w(r—1)

The parameter n € [0,1] is called learning factor. It is used for tuning the con-
vergence speed of the algorithm. Here, we set ¢; = 1 for all output neuron i,
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otherwise ¢; = 0. Equation (13) leads to the following simplified expressions. For
each connection (u,v), define the vectors ;' , and =, , by

uU,v

1

——— ifu=i, v#i
T‘Z + TZ_’ ) # i
+ o= 1 . . .
Tuvsi —, ifu#i, v=i,
T + T‘z
0, otherwise,
and
1+ o; . . .
——— ifu=1, v=i,
Ti —‘y—lTZ
_ - ifu=i, wv#i,
ryuv;i = T +Tz
_L,a if u # i7 v = 7;’
r; + Tz
0, otherwise.

Then, denoting by o the vector of activity rates o = (01,...,0n):

do
Owid

do

OWuv

:'y:[,vgu [I—Q]_1 and = Yo 0u [I—Q]_l7 (14)

where I and € are N-dimensional matrices, I is the identity, and the element (i, j)
of  is given by

+ —
w; ; — W; 04
Qid Y zftQJ. (15)
Tj+Tj

The partial derivatives were explicitly computed for a feedforward RNN with a
single layer in [60].

An online version of the Gradient Descent (GD) algorithm is an iterative
method that processes the input patterns one-by-one realizing the following two
main operations: to compute the direction of the gradient of the loss function and
to update the weights using the expression (12). The method can either be stopped
using an arbitrary number of iterations or when the performance measure is smaller
than some threshold value. The online version of the GD algorithm is specified in
Algorithm 1. In contrast, an offfine training scheme (also called batch algorithm)
uses the whole pattern data before modifying the model parameters. An input is
offered to the network, the direction of the gradient is computed. When all data
have been presented, the gradient directions are averaged. Finally, each weight
is updated using the average of the gradient directions. In the Machine Learning
literature coexists two opposite views concerning these two training schemes. As
far as we know there has been no consensus on which scheme (on-line or offline) is
more efficient for training a learning model [88, 106].

3.3.1 Slight modification of the gradient descent algorithm

A slight variation of the GD algorithm for RNN was proposed in [12]. The authors
increase the amount of adjustable parameters during the training of the gradient
descent algorithm without modifying the network topology and the time complexity
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Algorithm 1: Specification of the GD learning algorithm for the RNN model
(online version).
Inputs : {(a® b®):k=1,..., K} (training dataset), n (learning
rate), maxlters (max. number of iterations), the topology of the
RNN (that is, the routing probabilities)

Outputs: w = {w;fj, w; =1, , N} (network’s weights)

17=0;

2 Initialize all weights (for instance, randomly); // we get wZES) for all
u,v with v either input or hidden neuron

3 Choose the value of r; for all ¢ € O;

4 while ((7 < maxlters) or (until convergence)) do

5 T=71+1;// iteration step T

6 k=7—1mod K + 1;

7 At =a®); // read input

8 For all ¢ ¢ O compute r; using (11); // weights are those at 7—1

9 For all i, compute g; using (6), (7) and (8);

10 Compute [I— 2] " (see (15));

11 For all connections (u,v), update w ,, and w, ,, using (12); // see also
3.3.2 for many relevant technicalities

12 Evaluate convergence.

of the algorithm. They consider as adjustable parameters in the training objective
the following ones: the connection weights {wj’j, w,; ;4 € [1, N]}, the positive
and negative input signals from the environment A;", A, for all hidden and output
neuron ¢, and the service rate r; for all output neuron .

Considering the training error given by the expression (10), the update learning
rule is given as follows. Let A, P, AT and A~ be matrices of dimensions N x N,

where the matrix A has elements
AZ,JZOIf’L#j and Ai7i:ri+Ti_,
the matrix P is defined as

Piy=0ifi#j and  Piy=o;

and the matrices AT and A~ have at the position (i, u) the value 5/\9_:_ and 88/\97_ ,

respectively. By computing the elements of AT and A~ we have:
AT=AHT-9)H" and A =A"'P(I-Q)HT,

where Q was defined in the expression (15). Then, for each input pattern (a(k)7 b(k))
at the 7th iteration, we have the following update rule:

wi) = w7 =D T -0 (07 b)), Vv, (16)
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NO =X (@ ~bO)TAL, Vue IUo, (a7)

_T+

(1) — (7=1) _ (M) _py__—Tu
Tu T 12 (Qu M ) (Tu n TJ)2)

Yu € 0, (18)

where [I — Q]™', A* and T* are computed using the current input (a,b) and A*
denotes the column u of the matrix A*.

3.3.2 Technical issues

We discuss here some technical issues related to the learning process, well illustrated
by the GD procedure. Recall that the model can be seen as a network of queues (it
is actually born in this way). This has some consequences, that have an impact on
the design algorithmic decisions. A first point concerns the use of (12) for updating
the weights. Indeed, it may happen that (12) leads to a new value for some weight
that is negative or null. This does not fit the analogy with a network of queues,
or even a network of spiking neurons where the weights model mean throughputs
of spikes: weights should be positive numbers. We can accept a null value for
some w;, ,, interpreted as the fact that there is actually no such connection between
u and v, but a negative one has no interpretation. The usage is to respect this
analogy, modifying the updating rule such that the weights are never negative.
Three possible approaches are proposed in [35]:

e To use the following updating rule
wp D = max {wy 77+ 550, 0, (19)

and in the case that some weight is assigned value zero, then to apply one of
the following rules:

— fix a null value to this weight, and do not change it anymore in future
iterations;

— assign a zero value to this weight, but allow positive updates in subse-
quent iterations, keeping using (19).

e Another option is to decrease the value of n and update again the weight
using (12). If the new weight is still negative, repeat until obtaining a pos-
itive number or stop the loop using some control parameter. Formally, this
means that the learning factor becomes a variable parameter in the method.
In a nutshell, the global idea in descent methods is to decrease little by little
the learning factor, as we get closer and closer to a local minimum. Global
accuracy can also be improved (but also cost) if n(), say, is built by a supple-
mentary optimization process (this is called line searching in the area) [92].
We do not enter these details here.
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e An alternative option was presented in [74]. The authors propose a change

of variable: instead of using w;, , they use new variables 8, and 3, such
that
2 _ N2
w:r,v = ( ;r,u) and wu,v = (ﬂu,v) .
Then, instead of using the expression (14), we proceed as follows
0 0 0 0
=2, =2, (20)
ﬂu,v ’ awu,v ﬁu,v ’ awu,v

3.3.3 Computational cost of the gradient descent algorithm

When one data pattern is presented to update each weight in the network the main
computational effort consists of computing [I — €]~ " using (14) [35]. This effort
has O(N3) time complexity. A remark made in [35] consists in that when a m-step
relaxation method is applied the time complexity decreases to O(mN).
Additionally, the general scheme of the algorithm can be adapted when we use a
feedforward RNN. In this case the matrix I — € becomes triangular, so the compu-
tational cost of computing its inverse decreases to O(N?). Also, the computational
effort to compute each activity rate in feedforward networks is reduced, due to the
the activity rate of any neuron depends only on the neurons in the preceding layers.

3.4 Second order optimization methods

In this Section, we present the optimisation methods for RNN that use the infor-
mation given by the second derivative of the loss function. We start introducing the
Gauss-Newton (GN) methods, next we explore the Quasi-Newton (QN) techniques.
We present four particular algorithms developed for training RNNs: the Broyden-
Fletcher-Goldfarb-Shanno (BFGS), the Davidon, Fletcher and Powell (DFP), the
Levenberg-Marquardt (LM) and the LM with Adaptative Momentum (LM-AM).

The Gauss-Newton (GN) algorithm is a technique for solving non-linear least
squares problems that incorporates the second derivatives of the loss function or
an approximation of those. Unlike the algorithms of first derivatives that can
solve a large non-sparse optimization problems, a GN method can only be used
when the loss function is given by a quadratic objective function, for instance
the expression (10). The methods of the GN type are generally considered more
powerful in terms of accuracy and time than the algorithms that only use the first
derivative information.

The GN method is based on an expansion of the loss function in the Taylor
series. Let M be the number of adjustable parameters (the number of weights w;" F
and w;_ ) We define the M-dimensional vector w that collects in some arbitrary
order the weights w; ; and w; ;. Let a be an input vector on the network. The GN
algorithm employs a hnear approxunatlon with the first three terms of the Taylor
series

8Law 8Law
L(a,w+6) ~ L(a,w) + Z B Z BB, (21)
m 4 j
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where é is a M-dimensional vector that represents a small correction of the weights.
The solution is found by solving the M x M set of equations (called normal equa-
tions)

JTJ6 = -G, (22)

where G and J are the gradient vector and the Jacobian matrix, respectively. For
computing G and J we proceed as follows. Let e*) be the residual row vector of
dimension O for the kth input-output training pair,

o) — bk _ k). (23)

Collecting those residuals, we have a vector E of S x 1 dimensions, with S = KO.
Then, the gradient vector of L(-) has M x 1 dimensions and its mth element is

5
Oeg
Gp = —€s. 24
9w, ¢ (24)
s=1
The Jacobian matrix has dimensions S x M and its (s,m) element is
Js.m = OE; /0wy, (25)

For computing the partial derivatives of (24) and (25) we use the expressions pre-
sented in (14).

The GN method is a batch type algorithm. We call an epoch of the GN algo-
rithm when all the patterns in the training set are used [101]. At each epoch 7,
the weight correction § is computed, next the weights are updated as follows:

W = w1 | 405", (26)

where a € (0,1] is computed using a line search technique [91]. In the canonical
GN method this parameter is set to 1. A better strategy is tuning « with less
values until some suitable point. For details about how to tune a see Chapter 9
of [91].

The GN method for solving the problem of minimization using NNs presents
several drawbacks. The method requires a good initial solution, that is often not
available [30]. Another drawback is that the GN method requires computing the
Hessian matrix H (H = J7J) and its inverse, both computations can be expensive.
Therefore, the method is expensive in time and in storage.

A Quasi-Newton (QN) method type is a variant of the GN algorithms that
uses an approximation of the Hessian matrix (ﬁ) for solving the normal equations.
The general approach behind a QN method is an iterative procedure that consists
of starting with a positive and symmetric matrix and updating it in successive
steps in such a way that the matrix remains positive definite and symmetric. The
update rule always moves in a downhill direction for solving the normal equations
and guarantees that H approximates H. As we already commented so far, the
implementation of the second order methods is offline, thus at each epoch the
network outputs are computed for the whole of input patterns. We present in
Schema 2 a procedure that shows how to compute those model outputs. In the
following of this Section we will use this schema as a black box being a part of the
GN and Quasi-Newton algorithms. In the remainder of this Section, we present
four algorithms based on approximations of the Hessian matrix.
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Algorithm 2: Auxiliary schema. Given a RNN the procedure shows how
to compute the network outputs for the whole input dataset. The procedure
returns a K x N matrix, that has the vector o*) computed with the input

pattern al*) in its k-row.

Inputs : {(a®) b)) :k=1..., K} (training dataset), the topology of the

RNN

Outputs: The neuron activity rate produced by the whole of input

patterns: C' a K x N matrix

1 Choose the value of r; for all output neuron ;
2 For all i ¢ O compute r; using (11);

3 for (k+ 1to K) do

4 AT =a®; // read input

5 For all 4, compute o’ using (6), (7) and (8);

K2

// see also 3.3.2 for many relevant technicalities

6 Set the row k of C' with the vector o*);

3.4.1 The Broyden-Fletcher-Goldfarb-Shanno algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for the RNN model was
introduced in [74]. The BFGS is an offline algorithm, which at each epoch 7
an approximation of the Hessian matrix H™ is computed. The method starts
using the identity matrix as the initial Hessian approximation H(® = I. The
Choleski factorization is used for decomposing a symmetric and positive definite
matrix into two triangular matrices. Choleski factorization is more efficient than
alternative methods for solving linear equations, it is about two times faster than
the alternative ones. For details about the implementation of this factorization

see [91]. The matrix H™ is decomposed using Choleski factorization as

" — ,(O,T)
Let ¢ be an auxiliary scalar defined at each epoch as

9 (W) —wr=INT(G) — GT=1)

(W) — WD) TH) (wl() — wir—1)

o)

We define an auxiliary vector v as
v = DL (W) — w0y,

Next, we compute

A =1 4

((G(T) _ G(Tfl)) — L(T)V(T))VT(T)

VT(T)V(T)
The update of the Hessian matrix approximation is given by

HO+D — A AT,
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Finally, the weight update is given by d solving
HDs(+) — G, (32)

In summary, the BFGS method for RNN presented in [74] is defined in Algo-
rithm 3.

Algorithm 3: Specification of the BFGS algorithm for the RNN model.

Inputs : {(a®) b)) :k=1... K} (training dataset), maxIters (max.
number of iterations), the topology of the RNN
Outputs: The weights: w = {w; ;, w; ;14,7 =1,..., N} (network’s weights)

1 7=0;
2 Initialize all weights (for instance, randomly); // we get wfw(o) for all

%, v with u either input or hidden neuron
Choose the value of r; for all output neuron g;

H-= I;

Compute G using (24) and (14);

Compute 4 solving (32);

For all connections (u,v), update wy ,, and w,,

while ((7 < maxlters) or (until convergence)) do

T=T+1;

10 Apply Schema 2;

11 Compute G using (24) and (14);

12 Compute L using Choleski factorization see (27);

13 Compute ¢, v and A using (28), (29) and (30), respectively;
14 Update H using (31);

15 Compute 4 solving (32);

16 For all connections (u,v), update wj[

v

© 0w N0 oA W

U,v

, and w;, , using (26); // see also
3.3.2 for many relevant technicalities

17 Evaluate convergence;

3.4.2 The Davidon-Fletcher-Powell algorithm

The Davidon-Fletcher-Powell (DFP) algorithm is another widely used QN method
sometimes referred as Fletcher-Powell [91]. The algorithm is a slight variation of
BFGS algorithm, the difference between them is given in the following terms. The
scalar c is defined as

()2 (W™ —w-NT(G) — GT—D) 23
(G — GE-)THO (G — Gr-1)’ (33)

and the vector v is such that solves the linear system,
LOv(®) = (G — g1, (34)
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The matrix A is determined by computing

(G(T) — G(T—l))((w(r) — W(T—l))TL(T) — VT(T))

Co S CON
AT =L W — wr )G — G D) (35)
Finally, yielding the Hessian approximation
H™ = AMATM) (36)

and we compute the search direction & for update the weights solving the expres-
sion (32).

According empirical results the BEGS performs better than the DFP method [91].
Although, for some specific benchmark problems the DFP reached better accuracy
than DFGS [74]. The algorithm is summarized in 4.

Algorithm 4: Specification of the DFS algorithm for the RNN model. The
DFS and the BFGS algorithms differ only in details. As a consequence, we
introduce the DFS referencing the schema already presented in Algorithm 3.
Inputs : {(a® b)) :k=1... K} (training dataset), maxIters (max.
number of iterations), the topology of the RNN
Outputs: The weights: w = {w;’:j7 w; ;i,j=1,..., N} (network’s weights)

// Perform the lines 1 until 7 of Algorithm 3.

while ((7 < maxlters) or (until convergence)) do
T=17+1;

Apply Schema 2;

Compute G using (24) and (14);

Compute ¢ using (33);

Compute L solving (34);

Compute A using (35);

// Perform the lines 14 until 17 of Algorithm 3.

3.4.3 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is one of the most standard optimization
methods used in the NN area [91,4, 63]. The LM is a sort of compromise between
an offline version of the GD algorithm and a GN method [80,91]. The algorithm
was introduced for training RNN in [16].

At each epoch 7, the approximation of the Hessian matrix is given by,

BT = 3T 30 4,01, (37)

where (7 > 0is called dumping term, I is the identity matrix of dimension M x M,
and J is the Jacobian matrix that is computed using (25). The dumping term g is
modified at each epoch. In the case that the prediction error decreases, then the
dumping term is reduced by some constant value 3

p— /B (38)
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Otherwise, the dumping value is increased by a factor of 3,

1 4= 3. (39)

So far, the factor for modifying the dumping term was set as 5 = 10 [91, 16].

The LM algorithm computes the weight correction § solving the system (32).
Then, the update rule for the weights is given by the expression (26). In [16], this
weight update considers only the search direction §. In other words, the authors set
a =1 in the expression (26). The algorithm can evolve through either of extreme
possible situations are [63,91]:

e If the dumping term approaches to zero, the LM basically performs as the
Gauss-Newton method.

e Otherwise, when the dumping term is very large, the matrix H becomes
diagonal dominant, so the update rule is similar to the updating expression
of gradient descent method using a learning factor of 1/pu.

Concerning the stopping conditions, the method can fail if the Jacobian matrix
becomes singular or nearly to singular. Even if this situation is rare in practice,
a control of the condition number of J can be useful [91]. Besides, it is necessary
to control that the dumping factor satisfies some boundary conditions. It is not
recommended to stop after an epoch wherein the training objective error increases.
For more technical discussion about the stopping criteria of the LM see [91]. We
present the LM procedure in Algorithm 5.

3.4.4 Levenberg-Marquardt with adaptive momentum training

A variation of the LM method applied to NNs was developed in [4, 5]. This approach
was adapted for the case of RNN on learning problems in [16]. The idea consists in
inserting a momentum term that controls the directions followed in the searching
space. The algorithm was introduced under the name of Levenberg-Marquardt with
Adaptative Momentum (LM-AM) [4,16]. The approach consists in maintaining the
conjugacy of successive searching vectors [10]. This means that at an epoch 7 the
new direction 6(7) depends on the selected direction at the previous epoch §(7—1).
It is desirable that the motion along a direction at the current step positively
interferes with the minimization along the previous step. Formally, this property
occurs when both vectors ("1 and §(7) are mutually conjugate, the same principle
is used in the Conjugate Gradient algorithm [91].
In the LM-AM the update rule for the weights at the epoch 7 is given by:

Al [~ -1 1
(n — _ 2 g (r) 4 = (-1
B o [H ] G+ -0, (40)
where )
A = —2 M AQ\) + ¢ (41)
C1
and
1 Cc1C3 — 022
i 2w:l(AP)Q — Ay 42)
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Algorithm 5: Specification of the LM algorithm for RNN.

Inputs : {(a®) b)) :k=1... K} (training dataset), maxIters (max.

number of iterations), the topology of the RNN, 1 (dumping
term), 8 (constant to modify )

Outputs: The weights: w = {w:‘j, w,; ; 4, j=1,..., N} (network’s weights)

1 7=0;

[N

Initialize all weights (for instance, randomly); // we get w:‘w(o) for all

%, v with uw either input or hidden neuron

3 Choose the value of r; for all output neuron i;
4 while ((7 < maxlters) or (until stopping conditions)) do
5 T=T+1;
6 Apply Schema 2;
7 Compute L(w) using (10);
8 Compute G using (24) and (14);
9 Compute J using (25);
10 Compute H using (37);
11 Compute 4 solving (32);
12 Compute temporal weights w¢,,, = w* + §;
// weights w* are those at 7 —1, see also 3.3.2 for
technicalities
13 Apply Schema 2 using the weights w{,,, ;
14 Compute L(wy,,,) using (10);
15 if (L(Wimp) < L(w)) then
16 Update p using (38);
17 Set the weights w* with w¢,, ;
18 Set L(w*) with L(w{,,,);
19 else
20 | Update y using (39);
21 Evaluate stopping conditions;
with

1
AQ(T) = 27)\2(62 — )\101)7

and the constants ¢, co and c3 are three real numbers defined as follows:

and

~ —1
0 =GO [EO] 6, (43)
ey = GTMgr—1 (44)
3 = 6TTVHM S, (45)

In practice, it is suggested to set AQ as
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where ¢ is some constant between 0 and 1 [4,16]. Then, the parameters for the
LM-AM procedure are ¢ and AP. When the LM-AM is applied for optimizing
classic NNs is suggested to experiment with 0.85 < ¢ < 0.95 [4]. In [16], the
authors applied LM-AM for optimizing the RNN model achieving the best results
when 0.1 < AP < 0.6. The Algorithm 6 presents the pseudo-code of the LM-AM.

Algorithm 6: Specification of the LM-AM algorithm for RNN. This algo-
rithm is a variation of Algorithm 5, as a consequence we introduce it refer-
encing the schema already presented there.

Inputs : {(a®) b)) :k=1... K} (training dataset), maxIters (max.
number of iterations), the topology of the RNN, p (dumping
term), S (constant to modify p), ¢ and AP (specific parameters
of the LM-AM)

Outputs: The weights: w = {w;’:j7 w; ;1i,j=1,..., N} (network’s weights)

// Performs the lines 1 until 3 of Algorithm 5
1 while ((7 < maxlters) or (until stopping conditions)) do
// Performs the lines 5 until 10 of Algorithm 5
Compute ¢1, ¢ and ¢z using (43), (44) and (45);
Compute AQ using (46);
Compute A; and Az using (41), (42);
Compute § using (40);
// Performs the lines 12 until 21 of Algorithm 5

ok WwN

4. Critical review

In this section we discuss some stability issues of the model when applied to super-
vised learning tasks. Next, we analyze the time complexity and memory stockage of
Gauss-Newton methods. We discuss the difficulties of training recurrent topologies
and we present an alternative for using recurrent networks without the drawback
of learning the network parameters. Next, we present some properties of the RNN
model and its analogy with a specific type of NN. The section ends with a presen-
tation of RNN variations.

4.1 Stability issues

Originally, the model was introduced as a network of queues. Some of the conse-
quences of that were already discussed in Sections 3.3.2. Actually, the model has
been applied respecting the analogy with queueing networks. As a consequence,
the weights are controlled in order to keep them in positive intervals. If we see
neuron ¢ as a queue, the interpretation of p; makes basically sense in the stable
case only, when the queue is in equilibrium (that is, when the underlying stochastic
process is ergodic). The same holds for the whole network. This is a tricky point.
Seeing i as a queue, we have stability only when Tf <r;+T; . If we want to keep
this true, we need supplementary constraints in the optimization processes, since,
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at each step, a new neuron rate r; is computed, as a function of the previously
computed weights, and intuitively, it must be high enough such that the neuron
remains stable. The point is also relevant regarding the use of the model in su-
pervised learning, because roughly speaking, stability implies that the non-linear
system of equations (6), (7) and (8) has an unique solution. The usage is, however,
to ignore this point and only check stability for the output neurons. In this case,
if for some neuron i we obtain g; > 1, we replace this number by 1.

These remarks mean that there is an open research line here, where other learn-
ing schemes could be designed weakening the connexion with the queuing world.

4.2 Time complexity

The LM algorithm has been proved to be efficient in terms of computational time
and accuracy rate. In spite of that, the method presents some drawbacks. One
of the weak points is that it may require a large amount of memory, due to the
need of storing large matrices [10]. The procedure is offline, at each iteration the
algorithm uses the whole data pattern for computing the Jacobian matrix and the
inverse of the pseudo-Hessian matrix. These two operations can be expensive when
the dimensions of both matrices are large. An exact and efficient method for com-
puting the Hessian for the feedforward case was introduced in [18]. However, this
approach is not practical in the case of large networks [83]. Another operation
that has a high computational cost is the computation of the inverse of H. For a
M x M matrix, we have the following well known techniques for inverting a matrix
and their corresponding computational costs: Gauss-Jordan elimination method
(time complexity O(M?)) [91], Strassen method (time complexity O(M°827)) [92],
Coppersmith-Winograd method (time complexity O(M?237%)) [23]. A slight vari-
ation of the LM algorithm was proposed in [105], wherein the authors reduce the
memory space used for storing the Jacobian and pseudo-Hessian matrix. However,
the proposal is much slower in terms of convergence speed.

4.3 Difficulties for optimizing recurrent topologies

In the machine learning community there have been numerous efforts to develop
algorithms for training a NN with a recurrent topology. In spite of that, in practice
is hard to train recurrent networks. An algorithm based on the gradient information
has often stability problems, due to the volatile relationship between the weights
and the states of the neurons [81]. These phenomena were studied by several
researchers. In the literature, they are identified as wvanishing and the exploding
gradient problems [17]. The first one occurs when the gradient norm tends fast
towards zero. The exploding gradient phenomenon refers to the opposite situation,
that is, when the gradient norm tends to get very large [89]. As far as we know,
the vanishing and exploding gradient phenomena have not been yet studied for
RNNs. The research effort continues to address these issues. For instance, a new
attempt to train NN with recurrences was recently introduced under the name of
Hessian-Free Optimization [81]. This could also be explored for training recurrent
RNNs.
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4.4 Reservoir computing and Random Neural Networks

During the last fifteen years, Echo State Network (ESN) has received much at-
tention in the NN community, due to its good performance for solving time-series
learning problems. The ESN introduces a new approach to design and train NN
with recurrences. In these models, learning only occurs in the weights that are
not involved in recurrences. Those involved in circuits are deemed fixed during the
training process.

In the canonical ESN the neurons have associated a sigmoid transfer function. A
variation of the ESN model named Echo State Queueing Network (ESQN) that uses
the dynamics of the RNN (based on Eqns. (6), (7) and (8)) was introduced in |13,
14]. The ESQN has been successfully applied for solving temporal learning tasks,
for instance, in predicting future Internet traffic based on past observations [13].

4.5 Universal approximator

George Cybenko investigated in 1989 the conditions under which feedforward NNs
are dense functions in the space of continuous functions defined, say, in the hyper-
cube [0, 1]!°1) [28]. Cybenko proved that any continuous function can be uniformly
approximated by a continuous classic NN having a finite number of neurons and
only one hidden layer. The considered activation function of the neurons was a
sigmoid function. In [48], the authors studied this property for the RNN model.
They proved that RNNs constitute a family of functions that can approximate any
real continuous function f : [0,1]1”l — [0,1]!°! with an arbitrary precision [48, 58].
In order to prove that RNNs satisfy this approximator universal property, the au-
thors consider a specific topology and two extensions of the model called Bipolar
Random Neural Network (BRNN) and Clamped Random Neural Network (CRNN).
For details about the proof see [49, 40, 48, 58|.

4.6 Analogy between RNNs and other NNs

In [37] was studied an analogy between a specific class of Artificial NN and the
RNN model. Consider a classical NN and let w,, be the weight from neuron u to
neuron v (note that the notation is in reverse order to that used in the standard
NN literature [19,98]). Given a sequence of inputs yi,ys2,...,yn to neuron u, its
output is

N
Yu = f (Z WyulYv — 0u>; (47)
v=1

where f(-) is a sigmoid function [37]. Assume that the input-output pattern in the
training data is binary. The input space is {0, 1}l and the output space is {0, 1}1°/,
where |J| and |O] are positive integers. The network topology is of the feeedforward
type with multiple layers. The adjustable parameters of the model are the weight
connections (wy,) and the bias parameter (6,) for u,v = 1,..., N. Let us consider
the indexes u and v to denote the neurons in the ANN and the indexes i and j to
denote the neurons in the RNN model. The analogy between both networks is built
using the same number of input, hidden and output neurons in the two networks,
as follows. The threshold of neuron w is associated with the flow of negative signals
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to neuron i: T; = 8,. The relation among the weight connections is given by the
following rules: if w,, > 0, then rip;fj = Wyy; if Wy < 0, then TiD; ;= | W |- I
is an output neuron, then d; = 1, and r; is a free parameter. The authors propose
toset di =0 and r; = Zjvzl (p;-fj + p;j) = Zi\f:l | Wy |, when ¢ and w are an input
and a hidden neuron respectively. Then, the input signals of an input node of the
RNN are set as follows:

e If the element i of the input pattern is equal to 1, then )\;r is a non null
constant in (0,1] while A;” = 0. The authors propose an ad-hoc setting for
the input rate /\;-F7 chosen according to the training data in order to obtain

the desired outputs.

o If the input pattern is equal to 0, then A; # 0 and )\Z-+ =0.

The vector of output activation values (y1,...,yn) corresponding to each neuron
in the ANN is associated with the vector (g1,...,0n) in the RNN. In the paper,
the authors proposed to use some “cut—points” (a1, ..., ay) such that

Y =0<=0; <1 —qy and Yyi=1<=0; >1—q.

The values of the flow of input signals A\;" and the cut-points «; must be chosen in
order to obtain the expected effect at the output values. It can be observed that
the task of tuning these parameters can be a non trivial problem.

4.7 Model variations

There are several extensions of the canonical RNN model. We present a brief
summary of a few of them.

e In [34], negative arriving customers (signals) make that the potential of the
neurons goes to zero.

e In [44,46,53,32] multiple classes of neurons are allowed, leading to an in-
creased flexibility in the design of the model.

e In [54,59,22| negative signal arrivals can trigger customers’ movements in
other parts of the network.

e In [67,69,33, 68| the rates of the neurons can be state-dependent, and batch
movements are also allowed.

5. Applications in the supervised learning area

Since its apparition in 1989, the RNN model has been applied in a large variety
of supervised learning problems. This article is not a survey about the RNN ap-
plications. We focus on the numerical optimization algorithms applied for solving
the supervised tasks, as well as in the usage of these algorithms. Both points were
already discussed in the previous sections. However, in the following we briefly de-
scribe several applications of the model. The main references used in this overview
are [104, 60, 9,99, 29].
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5.1 Application for multimedia quality assessment

Neural Networks have been applied for developing mechanisms of controlling the
quality of multimedia applications. Two main classes of methods can be considered
for assessing the perceived quality of multimedia streams:

e Objective methods: they are usually based on a comparison between the
original and distorted sequences. The main example is the Peak Signal to
Noise Ratio (PSNR).

e Subjective methods: the most commonly used measure is the Mean Opinion
Score (MOS), where a group of people evaluate media samples according to a
predefined quality scale, under carefully controlled experimental conditions.

Thus, the quality is measured as a distance function between the original and the
distorted sequences in the case of objective methods, and it is some statistical
function based on human evaluations in the case of subjective methods. These
approaches have the following drawbacks. Objective methods require the original
streams which often are not available in practical applications. In particular, this
restriction makes that these techniques can not be used for controlling applications,
which need real-time reactions. Subjective methods are expensive and, by defini-
tion, they can not be used in real-time problems. Another remark is that these
methods do not take into account the effects of the packet network’s parameters in
the perceived quality the streams.

A new approach was presented in [95], based on subjective techniques and QoS
metrics, in order to estimate in real time the quality of the media. We can describe
the main idea as follows. A set of original signals of video or audio (depending of our
problem) is considered as the data set. The training data is generated using a codec
and network simulation distortion considering loss rate, delay and other network
parameters which affect quality. Several models to characterize the loss processes in
the Internet are used to simulate distorted data, such as independent losses [20] or
fixed—size loss bursts [64], the Gilbert Model [62] and k" order Markov chains [107].
Next, a group of subjects evaluates the training set using a MOS protocol, thus a
collection of images or sound distorted is subjectively evaluated.

The RNN has been used for learning the relationship between the network
parameters (loss rate, delay, jitter,...) and quality as evaluated by panels of human
users. This approach of estimating the multimedia quality the has been studied
in the following articles [94,96,86,87|, among many others. In [96] the model
was compared with Naive Bayesian Classifiers and with classic Neural Networks,
for this specific supervised learning application the RNN model shows a better
performance.

In [95], other learning techniques were explored, including those included in
commercial packages. Fig. 4 shows one of the situations where RNN behaved
better than a competitor, on the same data and keeping the sizes of the vectors of
weights identical. We can see the classical overtraining phenomenon appearing in
the other technique.
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BR=0.7, FR=30 fps, RA=0.1
BR=0.7, FR=30 fps, RA=0.1

MOS

CcLP = CLP

(a) Correctly trainined (b) Example of an over-trained ANN

Fig. 4 Comparison between the RNN model in (a) and a classical commercial ANN
tool in (b); the picture shows the learned function plotted when varying two of its
input variables. Physical considerations say that the function was corrected learned
in (a), and that (b) is unrealistic.

5.2 Solving temporal supervised learning

Recently a computational model that uses the dynamics of the RNN has been
analyzed for studying sequential dataset [13,14]. The model name is Echo State
Queueing Network (ESQN) because it is an hybrid produced from two different
types of Neural Networks: RNNs and Echo State Networks (ESN) [78]. The ESN
are recurrent NNs with sigmoid activation functions. They have been successful
used for solving time-series problems. The RNN variation named ESQN uses the
circuits of the network for memorizing the sequential data. Besides, the recurrent
part of the network acts as a projection method (as in ESNs and in Kernel Methods)
in order to enhance the linear separability of the input data. The network has fixed
the weights that are involved in the circuits and only the weights that generate the
output of the model are updated in the training phase. The state of the nodes
in this variation of the RNN model is vector 9. When an input pattern al® is
presented to the network, the vector of states evolves according to the dynamics
given by the following equations, where J denotes the set of input neurons and
denotes the set of hidden ones (the “reservoir”):

w _ o
0 =——, 1€, (48)
Tq
and for i € H,
ok o)
+ 7 + (k=
>_w T > il

(k) _ j€I 7 jeTun
;= (k) ’ (49)

ri+zw;ji%+ 3wyt
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Traffic time series Model NMSE CI
NN variation (ESN)  0.0062 +9.8885 x 1077

(
ISP RNN variation (ESQN)  0.0100  £1.2436 x 10~
NN variation (ESN) 0.3781 +0.0066
UKERNA RN variation (ESQN) 02030 +0.0335

Tab. I Comparison between the ESN (RNN with sigmoid activation function and
fized recurrent structure) and the variation of RNN for time series problems (named
ESQN). The table presents the Normalized MSE reached on 20 independent trials,
and the corresponding Confidence Interval (CI).

for all i € H. The expression (49) is a dynamical system that has at the left the
state values at time k, and on the right hand side the state values at time k — 1. In
the same way as in the ESN model, the parameters are computed generated using
a linear ridge regression from g to b.

According to the experimental results presented in [13] the model presents a
competitive accuracy if one refers to the classic Neural Networks with sigmoid ac-
tivation functions (as, for instance, the ESN model). In particular, the model has
been applied for predicting the Internet traffic on real dataset from an Internet Ser-
vice Provider (ISP) working in 11 European cities [24, 71]. The data was collected
from a private ISP from 7 June to 29 July, 2005. It covers traffic information of
11 European cities. In addition, the model has been applied for traffic prediction
using another benchmark data from the Traffic data from United Kingdom Edu-
cation and Research Networking Association (UKERNA) [24,71]. The data was
collected from 19 November and 27 January, 2005. It was studied in [24]. In order
to analyze the sequential behavior, the problem was studied collecting the data and
using three-time scales: day, hour and intervals of five minutes. Different scales of
time capture the strength of trend and seasonality. Fig. 5 shows an example of the
Internet traffic prediction using the ESQN model on the European ISP dataset.
Table I illustrates the accuracies of the ESQN and ESN models for predicting the
Internet traffic. For more details about the implementation of ESQNs to solve
time-series problems see [13,14, 15].

5.3 Approximation of nonlinear functions

A supervised task consists in generating a parametric mapping between inputs and
outputs. One of the most referenced and studied nonlinear benchmark has been
the xor problem. In 1969, Marvin Minsky and Seymour Papert proved the inability
of perceptrons to solve it [85]. Since then, xor is considered as a classical reference
to study the ability of a model to solve nonlinear classification problems. A RNN
that tries to match the xor function was studied in [37,39]. The same problem
solved using learning algorithms was studied in [16]. In [16] a generalization of
the xor problem named the parity problem was analyzed. The RNNs have been
used also for approximating real functions. For instance, in [16] it was studied for
approximating a sinusoidal function. In [82] an extension of the canonical RNN
has been used for solving real function approximation problems.
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(a) Internet traffic prediction using the RNN model called ESQN on the European

Neural Network World 5/15, 457—499

European ISP — 5 minutes time scale

T T T T T
0.8 -
0.6
0.4
0.2

0 Il Il Il Il Il Il I Il Il Il

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time steps
ESQN prediction of the validation data of the European ISP (5 minutes time scale)

1 M T T T T T T T T T
0.8 ‘N ‘w\ -
0.6 l | | (

' | \ f \

\ | o
0.4 | : \ ‘ ‘ : \ 11 ‘
| . |
SRR WW\» R \M! j \d i
|
0 J Il \J Il Il V). Il Il d w\ I “) Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time steps

ISP traffic validation data (5 minutes scale)

Functional value

Example of ESQN estimation of 100 validation instances of data of the European ISP
0.4 T

T T T T T T
* - Target
ESQN
0.35- =
0.3, i
0.25 -
0.2 B
0.15 e =
HhH,
k i
L =3 I\ 4
o M [
* /
¥ @:éﬁ Ml G ¥
* XE "
0.05' L L L L L L L L ke
4000 4010 4020 4030 4040 4050 4060 4070 4080 4090 4100
Time steps

(b) Internet traffic prediction using the RNN variation called ESQN on the Euro-
pean ISP traffic validation data (5 minutes scale). Example of ESQN prediction
for 1000 time steps

Fig. 5 Example of Internet traffic prediction using the RNN variation called ESQN
on the European ISP traffic validation data (5 minutes scale).
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5.4 Image processing

The RNN model has been widely used in image processing problems. In this section
we give a brief description about this type of applications.

Image compression

Feedforward NNs have been successful used for compressing images [31]. The net-
work has at least one hidden layer, and the same number of input and output
neurons. The number of hidden neurons is smaller that the number of units in the
other layers. The compression ratio is the rate between the number of input and of
hidden neurons. This specific topology is often referred to as a bottleneck network.
We illustrate it in Fig. 6 [79]. The input data is a collection that represents the
original image. For this purpose, some relevant features of the image is used [9]. In
the learning procedure the feedforward network is used as an auto-associator tool,
which means that the model is trained in order to recreate the input data [31].
The same approach was used with the RNNs on image data compression tasks [25,

51,26]. In [9], RNNs were compared to other more traditional compression tools
from the performance point of view. The measure of quality considered was the
Peak Signal to Noise Ratio (PSNR). The authors remarked that traditional meth-
ods, such as JPG and Wavelet Compression, reached higher performance level
(with respect to PSNR) than compression with RNNs. However, RNN presents
the advantage to be faster that the other techniques. Besides, RNNs for image
compression can be adapted for an implementation using parallel computing. For
instance, the image can be fragmented in several parts, and for each part an RNN
can be used for compressed/decompressed the image fragments. This procedure
can be implemented in parallel. Thus, the computational time of this compres-
sion/decompression technique considerably decreases with respect to the other
more classical techniques.

Output units

Hidden units

Input units

Fig. 6 Bottleneck network used for compressing images. The network has the same
number of input and of output neurons. The compression ratio is given by ratio
between the number of input and of hidden neurons.

Image enlargement

The Image Enlargement is a technique for resizing a digital image in order to in-
crease its resolution. A procedure to solve this problem using RNNs was developed
in [8,9]. The model was applied for enlarging two well know images called Lena
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and Peppers. The procedure requires a training data composed by pairs of images.
Each pair is composed of the original (the smaller one) and the target (the larger
one). The authors propose to use a feedforward RNN and the gradient descent
training algorithm. The training function is defined using the zero order interpo-
lation, a technique for signal reconstruction. For details about the technicalities of
this procedure see [31,9].

Image fusion

In the fusion of images the goal is to obtain a new image with high-resolution
from a set of images with low-resolution. The problem using RNNs was examined
in [9]. The training inputs are composed of several images, for instance produced
by sensors. As usual in supervised learning, each input pattern has associated with
a target. In this task, the target is an image with better resolution that the one,
present at the input. The network is used for learning the mapping between the
set of sensor images and the target image. The authors in [9] use Gradient Descent
with RNN for solving this problem.

Medical image computing

RNNs have been applied in image segmentation for Magnetic Resonance Imaging
(MRI) of the brain [50,43]. The application on MRI is based on the following
procedure. Given a reference image that contains a finite set of regions, the goal
is to use RNNs for classifying those regions. The approach consists of training
several RNNs, each of them using a specific region of the reference image. Then,
after this training phase, an image is decomposed into many blocks of small sizes,
and each block is classified using the corresponding RNN. Thus, we can assign a
label to each small block (eventually individual pixels can be considered) of the
image. The model has been applied to the segmentation of ultrasound images [77].

Textural features for image classification

Textural features classification is an area of image processing and computer vision
where the goal is to categorize or to classify pictorial information. This is done using
a set of meaningful features of the image. Texture is one of the main characteristics
for identifying or classifying individual pixels or pixel blocks in an image. Several
works analyze what kind of textural features are useful for classifying images [65,
93]. Once the features are defined, the blocks of images can be categorized using
some pattern recognition methods. In [103] the authors analyze the performance
of using RNNs to classify pixels into texture classes. According to this article, the
classification performance of RNNs is comparable with that of the other methods
presented in the pattern recognition literature.

An extension of RNNs called Multiple Classes Random Networks [44] was ap-
plied to the Color Pattern Recognition problem in [2]. The model was also applied
to another classification problem called Laser Intensity Vehicle Classification Sys-
tem (LIVCS) [70]. Basically, laser intensity images are collected in an information
system. This kind of images produce information that is less sensitive to environ-
mental conditions that information produced by sensors and video systems. Once
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the information is collected, specific features are used for training the RNN model.
Another area of application was image reconstruction, see for instance [56].

Other areas of image processing

In a similar way as for image compression, the RNN model has also been applied
to video compression [51]. The authors develop the technique on video sequences
over Broadband ISDN networks. According to [25, 26,27, 51|, RNNs exhibit a good
performance in these tasks.

Image synthesis consists of creating digital images from some texture and form
of image description. The approach using RNNs considers an architecture where
each neuron is associated with each pixel of the image. To train the networks the
method uses a training set composed of images where the aim is to learn certain
textural features such as granularity, inclination, contrast, homogeneity and others.
Once the network is trained, it can be used to generate images with similar textural
characteristics as the images used in the learning process. Models to create image
synthesis in gray level using RNNs have been examined in [6,45,103]. There is also
some research for color images [7, 46].

5.5 Other applications of the RNN model

In addition to supervised learning, the model has been used in the field of combi-
natorial optimization problems. Some of the main applications are the following
ones (the list is not exhaustive):

o The Traveling Salesman Problem (TSP) is a classical case within hard combi-
natorial optimization problems. The goal is to design a set of minimum-cost
vehicle routes delivering goods to a set of customers where the vehicles start
and finish at a central point. This problem was studied using RNNs in [47].

e Another combinatorial optimization problem is the Minimum Vertex Cover-
ing (MVC) problem which was studied in [1,42].

e The satisfiability (SAT) problem consists of determining if the variables of
a given Boolean formula can be assigned in such a way that the formula
evaluates to TRUE. The SAT problem has a great importance in computer
science and it was the first known NP-complete problem. It was studied
using RNNs in [41].

e The well known Minimum Steiner Tree (MST) problem in graphs is a sort of
benchmark in combinatorial optimization. A RNN-based approach has been
developed to find a solution in [55, 61].

e RNNs have also been used to solve two problems close to MSTs: the dynamic
multicast problem [55, 3] and the access network design problem [21].

e The Independent Set problem was studied with a variation of the RNN model
in [90].

e The Optimal Resource Allocation on a distributed system was analyzed using
RNNs in [108].
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e Associative memory: works about associative networks for storage and re-
trieval symbolic information that use the RNN model can be found in [102,
52,49,73]. In addition, an analogy between the Hopfield Network and the
RNN was studied in [75].

e Applications in networking using a routing protocol called the Cognitive
Packet Networks are found in [76, 57, 99].

6. Conclusions and perspectives

Since the early 1990s, the Random Neural Network (RNN) model has gained im-
portance in the Neural Networks (NNs) area as well as in the field of the Queueing
Theory. The model can be seen as an extension of open Jackson’s networks (it can
actually be seen in several different ways). It has characteristics that are present
in biological NNs, such that the action potential, firing spikes among neurons,
inhibitory and exhibitory spikes, random delays between spikes, and so on.

This article intends to be a practical guide for applying RNNs in supervised
learning tasks. Several learning algorithms that have been used for training RNNs
are presented in some detail. In 1993, a learning algorithm of the Gradient Descent
(GD) type was adapted for the RNN case. At the beginning of the 2000s, Quasi-
Newton (QN) methods were applied for training these models. More recently, other
second-order algorithms, namely the Levenberg-Marquardt (LM) method and some
variations were also developed for training RNNs. The LM procedure is a more
robust technique than Gauss-Newton algorithms and it is very popular in NNs. In
general, the available experimental results have shown that QN methods are much
faster than GD algorithms. However, QN methods (for instance LM) can present
robustness problems. First order optimization models are usually more robust
but slower. In the case of a recurrent topology, a first order method can present
also problems of stability. Those drawbacks are identified in the NN literature as
the “exploding” and “vanishing” phenomena. To the best of our knowledge, those
phenomena have not been analyzed yet in the RNN case.

RNNs have been successfully used as learning tools in many applications of
different types. In this overview, we only scratched the surface of some of those
applications. We described some solutions in the area of pattern recognition, image
processing, compression, as well as in some combinatorial optimization problems.

Due to the good results previously mentioned, we encourage researchers to
continue the ongoing effort around, in particular, the following lines:

e All the learning algorithms presented in the RNN literature use the same
type of cost function: a sum of squared “individual” errors. It can be inter-
esting to develop algorithms that use other measures of errors, as for instance
the Kullback-Leiber one. It is known that this metric is specially useful for
evaluate the learning performance on classification tools [66].

e A point that deserves specific attention is the study of the difficulties of train-
ing a RNN with a recurrent topology, in particular with GD-type algorithms.
See for instance [17,89] in the case of classical NNs. As far as we know, these
studies have not been extended yet to the case of RNNs.
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e There are several optimization algorithms developed in the NN area that
are not still studied for the RNN case. For instance, we can mention the
Hessian-free optimization and back-propagation curvature [83].

e In [11] RNNs have been implemented in parallel multiple GPUs. In this im-
plementation, the authors used only the gradient descent method. Therefore,
similar works using second-order methods in parallel implementations should
be explored as-well.
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